Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders

Beathe Haatveit, Jimmy Jensen, Dag Alnæs, Tobias Kaufmann, Christine L. Brandt, Christian Thoresen, Ole A. Andreassen, Ingrid Melle, Torill Ueland, Lars T. Westlye

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


BACKGROUND: Schizophrenia is associated with cognitive impairment and brain network dysconnectivity. Recent efforts have explored brain circuits underlying cognitive dysfunction in schizophrenia and documented altered activation of large-scale brain networks, including the task-positive network (TPN) and the task-negative default mode network (DMN) in response to cognitive demands. However, to what extent TPN and DMN dysfunction reflect overlapping mechanisms and are dependent on cognitive state remain to be determined.

METHODS: In the current study, we investigated the recruitment of TPN and DMN using independent component analysis in patients with schizophrenia spectrum disorders (n = 29) and healthy controls (n = 21) during two different executive tasks probing planning/problem-solving and spatial working memory.

RESULTS: We found reduced load-dependent DMN deactivation across tasks in patients compared to controls. Furthermore, we observed only moderate associations between the TPN and DMN activation across groups, implying that the two networks reflect partly independent mechanisms. Additionally, whereas TPN activation was associated with task performance in both tasks, no such associations were found for DMN.

CONCLUSION: These results support a general load-dependent DMN dysfunction in schizophrenia spectrum disorder across two demanding executive tasks that is not merely an epiphenomenon of cognitive dysfunction.

Original languageEnglish
Pages (from-to)389-396
Number of pages7
JournalNeuroImage Clinical
Publication statusPublished - 2016

Swedish Standard Keywords

  • Neurosciences (30105)


  • Across tasks
  • Default mode network
  • Functional magnetic resonance imaging
  • Independent component analysis
  • Schizophrenia spectrum disorder
  • Task-positive network


Dive into the research topics of 'Reduced load-dependent default mode network deactivation across executive tasks in schizophrenia spectrum disorders'. Together they form a unique fingerprint.

Cite this