Aktiviteter per år
Sammanfattning
Image processing tasks have benefited from deep learning models based on convolutional neural networks. However, the success of image classification models is dependent on several factors such image quality, dataset size and class distribution. Achieving acceptable accuracies with datasets not meeting these requirements is challenging. Domain specific dataset augmentation techniques have been proposed to mitigate the problem. This paper investigates adaptation of multi-source datasets as an augmentation approach to improve accuracy of crack detection in bridge concrete structures from low quality images in limited and imbalanced datasets. While experimental results show that data augmentation can improve accuracy of detection, we anticipate achieving even better results by combining this approach with generative machine learning models in future research.
Originalspråk | Engelska |
---|---|
DOI | |
Status | Publicerad - 2024-mars-20 |
Evenemang | 2024 International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024 - Victoria, Seychellerna Varaktighet: 2024-feb.-01 → 2024-feb.-02 |
Konferens
Konferens | 2024 International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024 |
---|---|
Land/Territorium | Seychellerna |
Ort | Victoria |
Period | 24-02-01 → 24-02-02 |
Nationell ämneskategori
- Data- och informationsvetenskap (102)
Fingeravtryck
Fördjupa i forskningsämnen för ”Concrete Crack Detection Using Multi-Source Data Augmentation in Deep Learning Models”. Tillsammans bildar de ett unikt fingeravtryck.Aktiviteter
- 1 Deltagit i konferens
-
International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
Einarson, D. (Deltagare)
2024-feb.-01 → 2024-feb.-02Aktivitet: Deltagit i eller arrangerat evenemang › Deltagit i konferens
Forskningsoutput
- 1 Programvara
-
Detecting Cracks in Concrete
Einarson, D. (Utvecklare), 2023Bidragets översatta titel :Att upptäcka sprickor i betong Forskningsoutput: Icke-textbaserad output › Programvara