Sammanfattning
In the era of information explosion, recommendation systems play a crucial role in filtering vast amounts of content for users. Traditional recommendation models leverage knowledge graphs, sentiment analysis, social capital, and generative AI to enhance personalization. However, existing models still struggle to adapt dynamically to users’ evolving interests across multiple content domains in real-time. To address this gap, the cross-domain adaptive recommendation system (CDARS) is proposed, which integrates real-time behavioral tracking with multi-domain knowledge graphs to refine user preference modeling continuously. Unlike conventional methods that rely on static or historical data, CDARS dynamically adjusts its recommendation strategies based on contextual factors such as real-time engagement, sentiment fluctuations, and implicit preference drifts. Furthermore, a novel explainable adaptive learning (EAL) module was introduced, providing transparent insights into recommendations’ evolving nature, thereby improving user trust and system interpretability. To enable such real-time adaptability, CDARS incorporates multimodal sentiment analysis of user-generated content, behavioral pattern mining (e.g., click timing, revisit frequency), and learning trajectory modeling through time-aware embeddings and incremental updates of user representations. These dynamic signals are mapped into evolving knowledge graphs, forming continuously updated learning charts that drive more context-aware and emotionally intelligent recommendations. Our experimental results on datasets spanning social media, e-commerce, and entertainment domains demonstrate that CDARS significantly enhances recommendation relevance, achieving an average improvement of 7.8% in click-through rate (CTR) and 8.3% in user engagement compared to state-of-the-art models. This research presents a paradigm shift toward truly dynamic and explainable recommendation systems, creating a way for more personalized and user-centric experiences in the digital landscape.
| Originalspråk | Engelska |
|---|---|
| Artikelnummer | 124 |
| Tidskrift | Big Data and Cognitive Computing |
| Volym | 9 |
| Nummer | 5 |
| DOI | |
| Status | Publicerad - 2025-maj-08 |
Nationell ämneskategori
- Data- och informationsvetenskap (102)