TY - JOUR
T1 - Implant size and fixation mode strongly influence tissue reactions in the CNS
AU - Thelin, Jonas
AU - Jörntell, Henrik
AU - Psouni, Elia
AU - Garwicz, Martin
AU - Schouenborg, Jens
AU - Danielsen, Nils
AU - Eriksson Linsmeier, Cecilia
PY - 2011
Y1 - 2011
N2 - The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 mu m) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 mu m) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions.
AB - The function of chronic brain machine interfaces depends on stable electrical contact between neurons and electrodes. A key step in the development of interfaces is therefore to identify implant configurations that minimize adverse long-term tissue reactions. To this end, we here characterized the separate and combined effects of implant size and fixation mode at 6 and 12 weeks post implantation in rat (n = 24) cerebral cortex. Neurons and activated microglia and astrocytes were visualized using NeuN, ED1 and GFAP immunofluorescence microscopy, respectively. The contributions of individual experimental variables to the tissue response were quantified. Implants tethered to the skull caused larger tissue reactions than un-tethered implants. Small diameter (50 mu m) implants elicited smaller tissue reactions and resulted in the survival of larger numbers of neurons than did large diameter (200 mu m) implants. In addition, tethering resulted in an oval-shaped cavity, with a cross-section area larger than that of the implant itself, and in marked changes in morphology and organization of neurons in the region closest to the tissue interface. Most importantly, for implants that were both large diameter and tethered, glia activation was still ongoing 12 weeks after implantation, as indicated by an increase in GFAP staining between week 6 and 12, while this pattern was not observed for un-tethered, small diameter implants. Our findings therefore clearly indicate that the combined small diameter, un-tethered implants cause the smallest tissue reactions.
KW - biocompatibility
KW - capability
KW - deep brain-stimulation
KW - interfaces
KW - intracortical electrode array
KW - multisite
KW - rat
KW - rodent
KW - silicon microelectrode arrays
KW - somatosensory cortex
KW - titanium
U2 - 10.1371/journal.pone.0016267
DO - 10.1371/journal.pone.0016267
M3 - Article
SN - 1932-6203
VL - 6
SP - e16267
JO - PLoS ONE
JF - PLoS ONE
IS - 1
ER -