Modelling of time-varying HRV using locally stationary processes

Rachele Anderson, Peter Jönsson, Maria Sandsten

Forskningsoutput: KonferensbidragSammanfattning (abstract)

6 Nedladdningar (Pure)

Sammanfattning

Estimates of heart rate variability (HRV), and particularly parameters related to high frequency HRV (HF-HRV), are in-creasingly used as a proxy of cardiac parasympathetic nervous system regulation. Reduced HF-HRV is related to attention deficits, depression, various anxiety disorders, long-term work related stress or burnout, and cardiovascular diseases [1,2]. In this work, a stochastic model, known as

Locally Stationary Processes, [3], is applied to HRV data sequences from 47 test participants. The model parameters are estimated with a novel inference method and regression using a number of available covariates is used to investigate their correlation with the stochastic model parameters.

OriginalspråkEngelska
Sidor44
StatusPublicerad - 2017
EvenemangEMBEC'17 & NBC'17 Tampere, Finland -
Varaktighet: 1980-jan.-01 → …

Konferens

KonferensEMBEC'17 & NBC'17 Tampere, Finland
Period80-01-01 → …

Nationell ämneskategori

  • Psykologi (501)

Fingeravtryck

Fördjupa i forskningsämnen för ”Modelling of time-varying HRV using locally stationary processes”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här