Regression-based transmission power control for green healthcare

Noman Zahid, Ali Hassan Sodhro, Raja Fawad Zafar, Bilal Zahid, Saeed Ahmed Khan, Faheem Akhter

Forskningsoutput: KonferensbidragArbetsdokument (paper)Peer review

8 Citeringar (Scopus)

Sammanfattning

Energy saving is the dire need of resource-constrained wearable healthcare sensors. Classical methods are inappropriate to fulfill the needs of healthcare platform especially, body sensor networks (BSNs). So, to remedy the energy crises issues this paper proposes regression-based Self-Predictive Power Control (SPPC) algorithm by incorporating power levels in association to dynamic wireless channel. Besides, two experimental scenarios; 'Right Wrist to Chest' and 'Right Ankle to Chest' are adopted, it is examined through extensive simulation results that proposed SPPC has better performance unlike their counterparts such as, APC. Thus, proposed regression-based SPPC is the suitable candidate for the emerging healthcare applications.

OriginalspråkEngelska
DOI
StatusPublicerad - 2019-mars-22
Externt publiceradJa
Evenemang2nd International Conference on Computing, Mathematics and Engineering Technologies, iCoMET 2019 - Sukkur, Pakistan
Varaktighet: 2019-jan.-302019-jan.-31

Konferens

Konferens2nd International Conference on Computing, Mathematics and Engineering Technologies, iCoMET 2019
Land/TerritoriumPakistan
OrtSukkur
Period19-01-3019-01-31

Nationell ämneskategori

  • Kommunikationssystem (20203)

Fingeravtryck

Fördjupa i forskningsämnen för ”Regression-based transmission power control for green healthcare”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här