The effect of changing the microstructure of a microemulsion on chemical reactivity

Celia Cabaleiro-Lago, L. Garcia-Rio, P. Hervella

Forskningsoutput: TidskriftsbidragArtikelPeer review

18 Citeringar (Scopus)

Sammanfattning

A kinetic study was carried out on various solvolytic reactions in water/NH4OT/isooctane microemulsions. The NH4OT surfactant is a derivative of the sodium salt of bis(2-ethylhexyl) sulfosuccinate (NaOT or AOT), where the Na+ counterion has been replaced by NH4+. The counterion substitution effects the phase diagram of the system, and therefore, NH4OT-based microemulsions with high water content reaching values of W = 350 (W = [H2O]/[NH4OT]) can be obtained. The presence of high W values suggests a transition in the microemulsion microstructure from water-in-oil (w/o) to oil-in-water (o/w), as was confirmed by conductivity and H-1 NMR self-diffusion measurements. The interpretation of the kinetic studies in terms of pseudophase formalism allows us to analyze the effect of the microemulsion on chemical reactivity, regardless of its microstructure. It has been confirmed that the values of the solvolytic rate constants at the interphase of oil-in-water microemulsions are similar to those obtained for aqueous SDS systems, showing that the hydration degree of the interphase of the oil-in-water microemulsions is independent of W. The influence of the surfactant counterion on the solvolytic rate constants was analyzed by comparing HOT-, NaOT-, and NH4OT-based microemulsions. An important influence on the rate constants caused by the changes in the structural properties of water has been observed as was confirmed by the water H-1 NMR signals.

OriginalspråkEngelska
Sidor (från-till)9586-9595
Antal sidor9
TidskriftLangmuir
Volym23
Utgåva19
DOI
StatusPublicerad - 2007
Externt publiceradJa

Nationell ämneskategori

  • Fysikalisk kemi (10402)

Fingeravtryck

Fördjupa i forskningsämnen för ”The effect of changing the microstructure of a microemulsion on chemical reactivity”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här