Using 3D GNG-based reconstruction for 6DoF egomotion

Diego Viejo, Jose Garcia, Miguel Cazorla, David Gil, Magnus Johnsson

Forskningsoutput: KonferensbidragArbetsdokument (paper)Peer review

2 Citeringar (Scopus)

Sammanfattning

Several recent works deal with 3D data in mobile robotic problems, e.g. mapping. Data come from any kind of sensor (time of flight cameras and 3D lasers) providing a huge amount of unorganized 3D data. In this paper we detail an efficient method to build complete 3D models from a Growing Neural Gas (GNG). We show that the use of GNG provides better results than other approaches. The GNG obtained is then applied to a sequence. From GNG structure, we propose to calculate planar patches and thus obtaining a fast method to compute the movement performed by a mobile robot by means of a 3D models registration algorithm. Final results of 3D mapping are also shown.

OriginalspråkEngelska
Sidor1042-1048
Antal sidor7
DOI
StatusPublicerad - 2011
Externt publiceradJa
Evenemang2011 International Joint Conference on Neural Network, IJCNN 2011 - San Jose, CA, USA
Varaktighet: 2011-juli-312011-aug.-05

Konferens

Konferens2011 International Joint Conference on Neural Network, IJCNN 2011
Land/TerritoriumUSA
OrtSan Jose, CA
Period11-07-3111-08-05

Nationell ämneskategori

  • Elektroteknik och elektronik (202)

Fingeravtryck

Fördjupa i forskningsämnen för ”Using 3D GNG-based reconstruction for 6DoF egomotion”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här